Fast Low-cost Online Semantic Segmentation (FLOSS)
floss(
.mp,
new_data,
data_window,
threshold = 1,
exclusion_zone = NULL,
chunk_size = NULL,
keep_cac = TRUE
)
a MatrixProfile
object.
a matrix
or vector
of new observations.
an int
. Sets the size of the buffer used to keep track of semantic changes.
a number
. (Default is 1
). Set the maximum value for evaluating semantic changes.
This is data specific. It is advised to check what is 'normal' for your data.
if a number
will be used instead of embedded value. (Default is NULL
).
an int
. (Default is NULL
). Set the size of new data that will be added to
Floss in each iteration if new_data
is large. If NULL
, the size will be 50. This is not needed
if new_data
is small, like 1 observation.
a logical
. (Default is TRUE
). If set to FALSE
, the cac_final
will contain
only values within data_window
Returns the input .mp
object new names: cac
the corrected arc count, cac_final
the
combination of cac
after repeated calls of floss()
, floss
with the location of semantic
changes and floss_vals
with the normalized arc count value of the semantic change positions.
Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26.
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Other Semantic Segmentations:
floss_cac()
,
floss_extract()
,
fluss_cac()
,
fluss_extract()
,
fluss_score()
,
fluss()
data <- mp_fluss_data$tilt_abp$data[1:1000]
new_data <- mp_fluss_data$tilt_abp$data[1001:1010]
new_data2 <- mp_fluss_data$tilt_abp$data[1011:1020]
w <- 80
mp <- tsmp(data, window_size = w, verbose = 0)
data_window <- 1000
mp <- floss(mp, new_data, data_window)
mp <- floss(mp, new_data2, data_window)