Computes the arc count with edge and 'online' correction (CAC).
floss_cac(.mp, data_window, exclusion_zone = NULL)
a MatrixProfile
object.
an int
. Sets the size of the buffer used to keep track of semantic changes.
if a number
will be used instead of embedded value. (Default is NULL
).
Returns the input .mp
object a new name cac
with the corrected arc count and cac_final
the combination of cac
after repeated calls of floss()
.
Original paper suggest using the classic statistical-process-control heuristic to set a threshold where a semantic change may occur in CAC. This may be useful in real-time implementation as we don't know in advance the number of domain changes to look for. Please check original paper (1).
Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26.
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Other Semantic Segmentations:
floss_extract()
,
floss()
,
fluss_cac()
,
fluss_extract()
,
fluss_score()
,
fluss()
data <- mp_fluss_data$tilt_abp$data[1:1000]
new_data <- mp_fluss_data$tilt_abp$data[1001:1010]
w <- 10
mp <- tsmp(data, window_size = w, verbose = 0)
data_window <- 1000
mp <- stompi_update(mp, new_data, data_window)
mp <- floss_cac(mp, data_window)